step_lda()
creates a specification of a recipe step that will return the
lda dimension estimates of a text variable.
Usage
step_lda(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
lda_models = NULL,
num_topics = 10L,
prefix = "lda",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("lda")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose which variables are affected by the step. See
recipes::selections()
for more details.- role
For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new columns created by the original variables will be used as predictors in a model.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- columns
A character string of variable names that will be populated (eventually) by the
terms
argument. This isNULL
until the step is trained byrecipes::prep.recipe()
.- lda_models
A WarpLDA model object from the text2vec package. If left to NULL, the default, will it train its model based on the training data. Look at the examples for how to fit a WarpLDA model.
- num_topics
integer desired number of latent topics.
- prefix
A prefix for generated column names, default to "lda".
- keep_original_cols
A logical to keep the original variables in the output. Defaults to
FALSE
.- skip
A logical. Should the step be skipped when the recipe is baked by
recipes::bake.recipe()
? While all operations are baked whenrecipes::prep.recipe()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = FALSE
.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added
to the sequence of existing steps (if any).
Tidying
When you tidy()
this step, a tibble with columns terms
(the selectors or variables selected) and num_topics
(number of topics).
See also
Other Steps for Numeric Variables From Tokens:
step_texthash()
,
step_tfidf()
,
step_tf()
,
step_word_embeddings()
Examples
library(data.table)
data.table::setDTthreads(2)
Sys.setenv("OMP_THREAD_LIMIT" = 2)
library(recipes)
library(modeldata)
data(tate_text)
tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_lda(medium)
tate_obj <- tate_rec %>%
prep()
bake(tate_obj, new_data = NULL) %>%
slice(1:2)
#> # A tibble: 2 × 14
#> id artist title year lda_medium_1 lda_medium_2 lda_medium_3
#> <dbl> <fct> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 21926 Absalon Prop… 1990 0.157 0.0143 0.457
#> 2 20472 Auerbach, Frank Mich… 1990 0 0 0
#> # ℹ 7 more variables: lda_medium_4 <dbl>, lda_medium_5 <dbl>,
#> # lda_medium_6 <dbl>, lda_medium_7 <dbl>, lda_medium_8 <dbl>,
#> # lda_medium_9 <dbl>, lda_medium_10 <dbl>
tidy(tate_rec, number = 2)
#> # A tibble: 1 × 3
#> terms num_topics id
#> <chr> <int> <chr>
#> 1 medium 10 lda_D7i8p
tidy(tate_obj, number = 2)
#> # A tibble: 1 × 3
#> terms num_topics id
#> <chr> <int> <chr>
#> 1 medium 10 lda_D7i8p
# Changing the number of topics.
recipe(~., data = tate_text) %>%
step_tokenize(medium, artist) %>%
step_lda(medium, artist, num_topics = 20) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:2)
#> # A tibble: 2 × 43
#> id title year lda_medium_1 lda_medium_2 lda_medium_3 lda_medium_4
#> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21926 Proposa… 1990 0 0 0.0143 0
#> 2 20472 Michael 1990 0 0 0 0
#> # ℹ 36 more variables: lda_medium_5 <dbl>, lda_medium_6 <dbl>,
#> # lda_medium_7 <dbl>, lda_medium_8 <dbl>, lda_medium_9 <dbl>,
#> # lda_medium_10 <dbl>, lda_medium_11 <dbl>, lda_medium_12 <dbl>,
#> # lda_medium_13 <dbl>, lda_medium_14 <dbl>, lda_medium_15 <dbl>,
#> # lda_medium_16 <dbl>, lda_medium_17 <dbl>, lda_medium_18 <dbl>,
#> # lda_medium_19 <dbl>, lda_medium_20 <dbl>, lda_artist_1 <dbl>,
#> # lda_artist_2 <dbl>, lda_artist_3 <dbl>, lda_artist_4 <dbl>, …
# Supplying A pre-trained LDA model trained using text2vec
library(text2vec)
tokens <- word_tokenizer(tolower(tate_text$medium))
it <- itoken(tokens, ids = seq_along(tate_text$medium))
v <- create_vocabulary(it)
dtm <- create_dtm(it, vocab_vectorizer(v))
lda_model <- LDA$new(n_topics = 15)
recipe(~., data = tate_text) %>%
step_tokenize(medium, artist) %>%
step_lda(medium, artist, lda_models = lda_model) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:2)
#> # A tibble: 2 × 33
#> id title year lda_medium_1 lda_medium_2 lda_medium_3 lda_medium_4
#> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21926 Proposa… 1990 0 0.1 0.0429 0.0429
#> 2 20472 Michael 1990 0 0 0 0
#> # ℹ 26 more variables: lda_medium_5 <dbl>, lda_medium_6 <dbl>,
#> # lda_medium_7 <dbl>, lda_medium_8 <dbl>, lda_medium_9 <dbl>,
#> # lda_medium_10 <dbl>, lda_medium_11 <dbl>, lda_medium_12 <dbl>,
#> # lda_medium_13 <dbl>, lda_medium_14 <dbl>, lda_medium_15 <dbl>,
#> # lda_artist_1 <dbl>, lda_artist_2 <dbl>, lda_artist_3 <dbl>,
#> # lda_artist_4 <dbl>, lda_artist_5 <dbl>, lda_artist_6 <dbl>,
#> # lda_artist_7 <dbl>, lda_artist_8 <dbl>, lda_artist_9 <dbl>, …