Skip to content

step_dummy_hash() creates a specification of a recipe step that will convert factors or character columns into a series of binary (or signed binary) indicator columns.

Usage

step_dummy_hash(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  signed = TRUE,
  num_terms = 32L,
  collapse = FALSE,
  prefix = "dummyhash",
  keep_original_cols = FALSE,
  skip = FALSE,
  id = rand_id("dummy_hash")
)

Arguments

recipe

A recipes::recipe object. The step will be added to the sequence of operations for this recipe.

...

One or more selector functions to choose which variables are affected by the step. See recipes::selections() for more details.

role

For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new columns created by the original variables will be used as predictors in a model.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

columns

A character string of variable names that will be populated (eventually) by the terms argument. This is NULL until the step is trained by recipes::prep.recipe().

signed

A logical, indicating whether to use a signed hash-function (generating values of -1, 0, or 1), to reduce collisions when hashing. Defaults to TRUE.

num_terms

An integer, the number of variables to output. Defaults to 32.

collapse

A logical; should all of the selected columns be collapsed into a single column to create a single set of hashed features?

prefix

A character string that will be the prefix to the resulting new variables. See notes below.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip

A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()? While all operations are baked when recipes::prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = FALSE.

id

A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Details

Feature hashing, or the hashing trick, is a transformation of a text variable into a new set of numerical variables. This is done by applying a hashing function over the values of the factor levels and using the hash values as feature indices. This allows for a low memory representation of the data and can be very helpful when a qualitative predictor has many levels or is expected to have new levels during prediction. This implementation is done using the MurmurHash3 method.

The argument num_terms controls the number of indices that the hashing function will map to. This is the tuning parameter for this transformation. Since the hashing function can map two different tokens to the same index, a higher value of num_terms will result in a lower chance of collision.

The new components will have names that begin with prefix, then the name of the variable, followed by the tokens all separated by -. The variable names are padded with zeros. For example if prefix = "hash", and if num_terms < 10, their names will be hash1 - hash9. If num_terms = 101, their names will be hash001 - hash101.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, num_terms, collapse, and id:

terms

character, the selectors or variables selected

value

logical, whether a signed hashing was performed

num_terms

integer, number of terms

collapse

logical, were the columns collapsed

id

character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

  • signed: Signed Hash Value (type: logical, default: TRUE)

  • num_terms: # Hash Features (type: integer, default: 32)

Case weights

The underlying operation does not allow for case weights.

References

Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009).

Kuhn and Johnson (2019), Chapter 7, https://bookdown.org/max/FES/encoding-predictors-with-many-categories.html

See also

recipes::step_dummy()

Other Steps for Numeric Variables From Characters: step_sequence_onehot(), step_textfeature()

Examples

#> 
#> Attaching package: ‘data.table’
#> The following objects are masked from ‘package:dplyr’:
#> 
#>     between, first, last

library(recipes)
library(modeldata)
data(grants)

grants_rec <- recipe(~sponsor_code, data = grants_other) %>%
  step_dummy_hash(sponsor_code)

grants_obj <- grants_rec %>%
  prep()

bake(grants_obj, grants_test)
#> # A tibble: 518 × 32
#>    dummyhash_sponsor_code_01 dummyhash_sponsor_co…¹ dummyhash_sponsor_co…²
#>                        <int>                  <int>                  <int>
#>  1                         0                      0                      0
#>  2                         0                      0                      0
#>  3                         0                      0                      0
#>  4                         0                      1                      0
#>  5                         0                      0                      0
#>  6                         0                      1                      0
#>  7                         0                      0                      0
#>  8                         0                      0                      0
#>  9                         0                      0                      0
#> 10                         0                      1                      0
#> # ℹ 508 more rows
#> # ℹ abbreviated names: ¹​dummyhash_sponsor_code_02,
#> #   ²​dummyhash_sponsor_code_03
#> # ℹ 29 more variables: dummyhash_sponsor_code_04 <int>,
#> #   dummyhash_sponsor_code_05 <int>, dummyhash_sponsor_code_06 <int>,
#> #   dummyhash_sponsor_code_07 <int>, dummyhash_sponsor_code_08 <int>,
#> #   dummyhash_sponsor_code_09 <int>, dummyhash_sponsor_code_10 <int>, …

tidy(grants_rec, number = 1)
#> # A tibble: 1 × 5
#>   terms        value num_terms collapse id              
#>   <chr>        <lgl>     <int> <lgl>    <chr>           
#> 1 sponsor_code NA           NA NA       dummy_hash_9QeuR
tidy(grants_obj, number = 1)
#> # A tibble: 1 × 5
#>   terms        value num_terms collapse id              
#>   <chr>        <lgl>     <int> <lgl>    <chr>           
#> 1 sponsor_code TRUE         32 FALSE    dummy_hash_9QeuR