step_clean_names()
creates a specification of a recipe step that will
clean variable names so the names consist only of letters, numbers, and the
underscore.
Usage
step_clean_names(
recipe,
...,
role = NA,
trained = FALSE,
clean = NULL,
skip = FALSE,
id = rand_id("clean_names")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose which variables are affected by the step. See
recipes::selections()
for more details.- role
Not used by this step since no new variables are created.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- clean
A named character vector to clean variable names. This is
NULL
until computed byrecipes::prep.recipe()
.- skip
A logical. Should the step be skipped when the recipe is baked by
recipes::bake.recipe()
? While all operations are baked whenrecipes::prep.recipe()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = FALSE
.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added
to the sequence of existing steps (if any).
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, value
, and id
:
- terms
character, the new clean variable names
- value
character, the original variable names
- id
character, id of this step
See also
step_clean_levels()
, recipes::step_factor2string()
,
recipes::step_string2factor()
, recipes::step_regex()
,
recipes::step_unknown()
, recipes::step_novel()
, recipes::step_other()
Other Steps for Text Cleaning:
step_clean_levels()
Examples
library(recipes)
data(airquality)
air_tr <- tibble(airquality[1:100, ])
air_te <- tibble(airquality[101:153, ])
rec <- recipe(~., data = air_tr)
rec <- rec %>%
step_clean_names(all_predictors())
rec <- prep(rec, training = air_tr)
tidy(rec, number = 1)
#> # A tibble: 6 × 3
#> terms value id
#> <chr> <chr> <chr>
#> 1 ozone Ozone clean_names_mb92Q
#> 2 solar_r Solar.R clean_names_mb92Q
#> 3 wind Wind clean_names_mb92Q
#> 4 temp Temp clean_names_mb92Q
#> 5 month Month clean_names_mb92Q
#> 6 day Day clean_names_mb92Q
bake(rec, air_tr)
#> # A tibble: 100 × 6
#> ozone solar_r wind temp month day
#> <int> <int> <dbl> <int> <int> <int>
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 NA NA 14.3 56 5 5
#> 6 28 NA 14.9 66 5 6
#> 7 23 299 8.6 65 5 7
#> 8 19 99 13.8 59 5 8
#> 9 8 19 20.1 61 5 9
#> 10 NA 194 8.6 69 5 10
#> # ℹ 90 more rows
bake(rec, air_te)
#> # A tibble: 53 × 6
#> ozone solar_r wind temp month day
#> <int> <int> <dbl> <int> <int> <int>
#> 1 110 207 8 90 8 9
#> 2 NA 222 8.6 92 8 10
#> 3 NA 137 11.5 86 8 11
#> 4 44 192 11.5 86 8 12
#> 5 28 273 11.5 82 8 13
#> 6 65 157 9.7 80 8 14
#> 7 NA 64 11.5 79 8 15
#> 8 22 71 10.3 77 8 16
#> 9 59 51 6.3 79 8 17
#> 10 23 115 7.4 76 8 18
#> # ℹ 43 more rows